规格
|
Detection Method:
|
Fluorescent |
For Use With (Equipment):
|
Fluorescence Microscope, Flow Cytometer |
Format:
|
Kit |
The CaspGLOW™ Fluorescein Active Caspase-8 Staining Kit contains all the reagents necessary to detect active caspase-8 in cells with high sensitivity. Fluorescein (FITC)-conjugated IETD-FMK, a specific inhibitor of caspase-8, is utilized in this assay for detection. This reagent is cell permeable, non-toxic and irreversibly binds to the active enzyme. Detection of the labeled cells can be determined by flow cytometry, fluorescent microscopy or a fluorescent plate reader.
The caspases constitute a family of aspartate-specific cysteine proteases that mediate a sequence of cleavage events. Recruitment of the inactive proenzyme to oligomerized receptors leads to caspase activation and autoproteolytic cleavage. These active enzymes can then cleave other caspases, thereby generating a caspase signaling cascade that leads to a form of programmed cell death termed apoptosis.
Caspase-8, which is also known as FLICE, MACHalpha1, and Mch5, cleaves its substrates at the C-terminal aspartic acid residue of the motif Asp-X-X-Asp. Eight isoforms of caspase-8 exist, of which caspase-8/a and 8/b are the predominant forms. Upon stimulation of death receptors such as CD95/APO-1/Fas, TRAIL-R1, TRAIL-R2, TNFR1, and TRAMP, caspase-8 is recruited to the death-inducing signaling complex (DISC). Subsequent dimerization leads to caspase-8 activation via autocatalytic cleavage, which leads to the formation of a 12-kDa prodomain and a 43-kDa intermediate fragment that is further cleaved to produce 26-kDa and 18-kDa active enzymes. As an initiator caspase, this enzyme initiates a caspase signaling cascade that results in apoptosis. Substrates of caspase-8 include caspases-3 and -7, as well as the pro-apoptotic Bcl-2 family member Bid. In addition to its role in cell death, caspase-8 has been linked to cell adhesion and motility.
Reported Application
Flow Cytometric Analysis, Immunocytochemistry